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Numerous approaches have been proposed for time-
resolved oscillatory rheometric protocols that can
provide both time- and frequency-resolved measure-
ments on an aging, curing or crosslinking gel sys-
tem. Previous approaches include multiwave super-
position techniques, random/white noise sequences,
short-time Fourier transforms and repeated step strain
pulses. Here we revisit a common audio signal pro-
cessing sequence known as the exponential chirp,
which offers a number of benefits including (i) a
frequency-independent strain amplitude and (ii) a
continuously-varying phase. This chirp sequence en-
ables the linear viscoelastic properties of a ‘mutat-
ing’ (or time-evolving) gel to be rapidly determined
over several decades in frequency in ∼ 30 − 100 s
and has been claimed to be an optimal Fourier trans-
form sequence [1, 2]. However, closer investigation of
high-resolution calibration data on a model polymer
network shows that regardless of choice of the time-
frequency bandwidth parameter, measurement preci-
sion can be severely compromised at the highest and
lowest frequencies by ‘leakage’ of material information
into side-lobes of the chirp power spectrum. Taking
inspiration from the audio sequences used by bats in
echolocation [3], we illustrate how these inaccuracies
can be resolved through convolution of the chirp se-
quence with a carefully-chosen windowing function or
envelope. The resulting Optimized Windowed Chirp
(or OWCh) function provided to the rheometer con-
sists of an exponential chirp multiplied with a Tukey
window with window width parameter r and has the
form shown in Figure 1:
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FIG. 1. An Optimized Windowed Chirp (OWCh) function
of constant imposed strain amplitude containing frequency
information from 0.3 ≤ ω ≤ 30 rad/s.

The optimized waveform/window function can be

readily encoded in Matlab and then used to drive
the motor of an ARES controlled-strain rheometer.
Fast Fourier transformation of the input strain γ̃(ω)
and measured stress response σ̃(ω) allows direct com-
putation of the linear viscoelastic modulus across a
spectrum of frequencies as G∗(ω) = σ̃(ω)/γ̃(ω) in an
acquisition time of order T ' 2π/ωmin.
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FIG. 2. Use of Optimized Windowed Chirp (OWCh) func-
tions with window width r to extract the linear viscoelastic
spectrum of an entangled viscoelastic PIB polymer solu-
tion.

Numerical computations and experimental measure-
ments show that the error magnitude can, in fact, be
reduced exponentially with window width r through
correct selection of the window function, combined
with implementation of careful signal conditioning
protocols. We present experimental measurements on
a semi-dilute entangled polymer solution (cf. Fig. 2),
a worm-like micellar fluid and a time-evolving cross-
linked biopolymer gel, to show that this approach can
indeed rapidly and accurately extract the entire linear
viscoelastic spectrum of a time-evolving complex ma-
terial in less than 15 s, the time typically required to
obtain the complex modulus at a single low frequency.
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